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A mathematical model of volume dissociation of gas-phase hydrates in a porous 
medium is constructed. The model accounts for transport processes in the water 
phase. The effect of the porous medium permeability on the character of the pro- 
cesses of phase transition and filtration is analyzed on the basis of a self-simi- 
lar solution. 

The growth in studies of the processes of formation and dissociation of gas-phase hydrates 
in many ways is related to the problems of hydrate formation in the face zones of boreholes, 
in boreholes, and pipelines [i]. It is also related to the analysis of the potential of 
gas-phase hydrates as commercial minerals [2]. The results of numerous theoretical and 
experimental investigations of the thermodynamic aspects and properties of hydrate formation 
and dissociation in natural strata have been reviewed in [3, 4]. 

The process of dissociation (formation) of gas-phase hydrates is linked to the change 
in the governing thermodynamic parameters (pressure and temperature) and is accompanied 
by transport of heat, gas, and water. A mathematical model of the dynamics of the inter- 
acting processes of heat and mass transfer and phase transition in a prorous medium is con- 
structed within the framework of continuum mechanics and the thermodynamics of phase transi- 
tions. In [i, 5-7], models were constructed based on the assumption that there exists a 
sharp boundary: the phase transition front (dissociation). In this case, the pressure 
dependence of the temperature of dissociation was taken into account. It was shown in [8, 
9] that for the case of incomplete pore saturation by hydrates, these front models do not 
provide an adequate mathematical description, since there are thermodynamic contradictions 
in thepermeability range of practical interest (k > 10 -16 m2). A consistent mathematical 
model was proposed, which accounts for the formation of an extended phase-transition zone 
with the assumption that the ~ water formed in the dissociation process can beneglected. 
In the present work, the model from [8] is developed to take into account the presence and 
mobility of the water phase. This gives a more exact mathematical description and makes 
possible future studies of the dynamics of gas-phase hydrate dissociation and formation 
processes in porous media, including the effects of water-soluble hydrate-formation inhibi- 

tors. 

Statement of the Problem. We consider a one-dimensional approximation of the problem 
of gas-phase hydrate dissociation in a porous medium, which initially is a saturated mix- 
ture of gas, water, and hydrate in thermodynamic equilibrium. We will assume that the matrix 
of the porous medium and the gas-phase hydrate are incompressible and immobile, that the 
gas is perfect, and the water incompressible. The motion of the gas and water obeys the 
two-phase filtration Darcy law [i0]. Capillary effects are not considered. 

The fundamental equations describing the dynamics of an equilibrium mixture of gas, 
water, and gas-phase hydrate in a porous medium can be derived from conservation laws using 
the mechanics of heterogeneous media [ii]. The law of conservation of mass for the water 
has the form: 

0 (~,p~ + (1 - -  v) sp~) + div p~v~ = O; ( 1 ) 
m Ot 
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Fig. 1. Dimensionless temperature (i), pressure (2), 
hydrate saturation (3), and water saturation (4) as 
functions of the dimensionless similarity variable 
( a :  k = 10 -15 m 2, b: k = 10 -17 m2) .  

that for the gas is: 

m. 
0 

Ot 
(w (1 -- s) Ph -k (1 -- w)(1 -- s) pg) + div pevg = O; (2) 

Darcy's laws for water and gas are: 

k 
- -  f,<, (x', s) grad P, 

k 
vg -- - -  fz (v, s) grad P; 

~te 

(3) 

(4) 

the law of conservation of energy is: 

where 

OT 8,v 
(pC)~ . . . . . . .  m q o A -  - -  

or dt 
m(1 v)(1 s OP _ _ 

@ (pwv~cCw -~- pgvgCg) grad T + v~. grad P = div l~ grad T, 

(pC)e = ( l  .... m)  OmCm--~ lFt'VphCh @ /7"t (1 - -  ~) s,o~C~, Jr- m (1 - -  v)(1 - -  s) pgCz; 

L~ = (1 - -m) )~m+ tnv)~h + m ( 1 - - v )  s~,~ + m ( 1 - -  v ) (1 - -  s) ~.g; 

q = 8 1 1  w "-~ ( l .... S) h g - - h  h. 

(5) 

We write the equations of state as 

Pm= const, ( 6 ) 

p,~ = const, ( 7 ) 

P p~ (8) 
RT 

and the condition of thermodynamic equilibrium of the mixture as [12] 

T = ~ l l n P + ~ 2 "  ( 9 )  

It is easy to see that (1)-(9) reduces to a system of four equations in the unknowns 
T, P, v and s. 

At the boundary x = 0 of the porous medium 0 < x < ~, let values of the temperature 
and pressure be maintained which correspond to that region of the phase diagram in which 
the gas and water mixture exists and the gas-phase hydrate is not present. Then it is natural 
to expect the development of the process of decomposition of a gaseous cylinder with the 
formation of two zones, separated by a moving boundary X(t). Zone I (X(t) < x < ~) is 
an extended phase-transition region, in which equations (1)-(9) are satisfied. In zone II 
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(0 < x < X(t)), the gas-phase hydrate is absent, and the equations for this zone are easily 
obtained from (1)-(8) by setting v ~ 0. The two zones are separated by a moving boundary 
X(t), at which the pressure and temperature are assumed to be continuous while the functions 
v and s admit discontinuities. The conditions at this boundary can be obtained from the 
general jump relations [13]. Then the expression of mass balance for the water takes the 

form 

dX 
v~+) ( l o )  m (s_pw - -  %sPh - -  (1 - -  v) s+pw) dt p~ (v~_ - -  ~ = O, 

the mass balance for the gas is: 

m ((1 - -  s_) pg - -  ~+ ( 1 - -  s) Oh - -  (1 - -  v+)(1 - -  s+) Oz) - -  - -  

pg(V~_ n O, ~Ug+)~ 

and the energy balance is: 

dX 
mv+phq = ,~+ (grad T )$  -- ~ _  (grad T ) ! .  

dt 

We write the condition of thermodynamic equilibrium as 

initial conditions as 

T ,  ---- % In P ,  -+- ~z 2, 

t : O :  T----To, P : P o ,  v = % ,  s~ - so ,  X = O ,  

with To = ~1 In Po q- cz=, 

dX 

dt 

( i l )  

( 1 2 )  

(1.3) 

(14) 

and the conditions at the fixed boundary as 

x=0: T=T O , P=P~ withlT0>a~InP0+=~ (15) 

Relations (1)-(15) constitute the complete system of equations, initial and boundary 
conditions for determining the unknown functions T(x, t), P(x, t), v(x, t), s(x, t), and 

x(t). 

Self-Similar Solution. 
and (15). Then problem (1)-(15) admits a self-similar solution 

T =T(~) ,  P = P(~), ,~ = ~(~), s=s (~) ,  X = ~ t  '/2, ~ = x t  -I /2.  

In this case, theequations in zone I (~ < ~ < ~) take the form 

s' kf., p .  + , (~p,jp,, _ s)__i_ + (] _ ., ) __S + 
m~,o 

Let To, P0, v0, so, T 0, p0 be constants in conditions (14) 

( 1 6 )  

+ k 8f~:_...~, + . s' 
m~w O~ Os 

m~g . ~ T + + .... s' + rn~ \ 0,~ Os 

P' T' 
-Jr- ( I  - -  e) Ph_ ~, ~ ._~ ( 1 - -  ~)(1 --- S) P T 

Pg 2 

(17) 

(18) 

s' v '  ) ~ = 0, 
1 - - s  1 - - v  2 

(PC)e T '  2 ~ mqghv' - - - f - - -  ~ m (1 - -  ~)(1 --  s) P' -~ ~ -~ ( 1 9 )  

( &" . ' )  = o ,  0.~ s'  + .... T '  

T ---- czx In P +  c%. ( 2 0 )  
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2. Distribution of water saturation with (4); 
and without (5) taking water mobility into account 
(a: k = i0 -15 m 2, b: k = i0 -17 m2). 

The equations in zone II (0 < ~ < ~) are easily obtained from (17)-(19) by setting 

v - 0. 

The conditions at the moving boundary ~ = $ are: 

(s_ -- ~+sp~/p~o -- (1 -- v+) s+) [3/2 + 

+ 1~ (f~ (s_) /_-- f~ (%, s+) P+) = 0, (21)  
m ~  

( 1  - -  s _  - -  ( I  - -  v + ) ( 1  - -  s + )  - -  ~ +  ( 1  - -  8 )  9h/Pg) ~/2 + 

+ 1~ ([g(s_)P'_--[g(V+, s+)P'+) ---- 0, (22) 

m~+,o~q,8/2 = 2~e (~+, s+) T+ - -  k,~ (s_) TZ,  ( 23 ) 

T,  = % 11"1 P ,  + c%. ( 24 ) 

In addition, from (14), (15) we have: 

~- -0 :  T - - T  O , P = P ~  (25)  

$-~ ~ :  T = T o ,  P = P o ,  ~ = % ,  S=So. (26)  

Thus, after introduction of the similarity variable g = xt-I/2, the original initial- 
boundary value problem for the system of partial differential equations reduces to a three- 
point boundary value problem for ordinary differential equations with boundary conditions 
at ~ = 0, ~ = ~, and $ + ~. Note that here, 8 is the unknown quantity. Numerical solu- 
tion is carried out by a predictor-corrector iterative method [14] using subroutines from 
the NAG package. 

Sample Calculations. Figure 1 shows sample calculations of the self-similar solution 
for a prblem with the following parameters [3, 4, 12]: Pw = i000 kg/m 3, Pm = 2000 kg/m3, , 

Oh = 700 kg/m 3, C w = 4200 J/(kg.K), C m = 920 J/(kg.K), C h = 2700 J/(kg.K), Cg = 2093 J/ 
(kg-K), I w = 0.58 W/(m'K), i m = 1.9 W/(m-K), I h = 2 W/(m'K), Ig = 0.0072 W/(m'K), R = 519 

J/kg, =i = 10 K, ~2 = 128.1 K, q = 510 kJ/kg, m = 0.2, g = 0.87, ~w = 1-8"10-3 Pa's, ~g = 
1.98"10 -5 Pa-s. 

The parameter values for the gas and the gas-phase hydrate are appropriate for methane 
and its hydrate. In the calculations, a linear relation was used for the phase permeabili- 

ties. 

Figure 1 shows the dimensionless temperature T/T 0 (i), pressure P/P0 (2), hydrate satura- 
tion v (3), and water saturation s (4), as functions of the dimensionless similarity variable 

= ~(kP0/mDg)-i/2. Correspondingly, ~ denotes the dimensionless version of the quantity 
~. The calculations correspond to the values T o = 284 K, T o = 323 K, p0 = 106 Pa, v0 = 0.5, 
s o = 0.25 with different permeabilities: k = i0 -15 m 2 (Fig. la), and k = 10 -17 m 2 (Fig. 

ib). 

It is easy to see the qualitative differences in the hydrate- and water saturation 
distributions for the different permeabilities. So, for high permeability (Fig. la), the 
form of curves 3 and 4 is indicative of the decomposition of gas-phase hydrate in zone I 
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(~ > y), which is accompanied by an increase in water saturation. For low permeability 
(Fig. Ib), there is some increase in hydrate content and a decrease in water content in zone 
I. In addition, either a pressure maximum (Fig. la) or a temperature minimum (Fig. ib) is 
observed close tc the moving boundary. 

These results indicate that the magnitude of the permeability in many ways determines 
the character of those processes which accompany the decomposition of gas-phase hydrates 
in a porous medium. 

In conclusion, further evidence is given of the need to consider the effect of filtra- 
tion processes. Figure 2 shows, for comparison, distributions of water saturation obtained 
as a result of solving the problem with (curve 4) and without (curve 5, vw-----O) accounting 
for water mobility. The calculations of Fig. 2a and 2b correspond to the parameter values 
used for Fig. la and ib, respectively. It is clear that there is a significant discrepancy 
in the value of s, especially in zone II (0 < r < 7). The solution without water mobility 
overestimates the wave saturation and underestimates the velocity of the moving boundary. 
The divergence of the results increases with growing permeability. 

NOTATION 

x, coordinate; t, time; X, coordinate of the moving boundary; p, density; ~, filtration 
velocity; T, temperature; P, pressure; E, bulk concentration of water in the gas-phase 
hydrate; v, s, volume hydrate- and water saturations, respectively; k, permeability; ~, 
viscosity; f, phase permeability; C, specific heat capacity; m, porosity; q, heat of dis- 
sociation of the gas-phase hydrate; i, thermal conductivity coefficient; R, gas constant; 
h, enthalpy; ~, similarity variable; ~, dimensionless similarity variable; ~, similarity 
coordinate of the moving boundary; u dimensionless similarity coordinate of the moving 
boundary. Indices: h, gas-phase hydrate; m, matrix of the porous medium; w, water; g, 
gas; e, effective value; -, +, *, quantitites to the left, right, and at the moving boundary, 
respectively; n denotes the projection of the normal onto the surface of the moving boundary; 
0, initial and boundary values. 
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